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Above the first lasing threshold the degenerate optical parametric oscillator with saturable absorber displays
successive Hopf and Turing instabilities. Various spiral patterns and defect turbulent patterns are numerically
observed on the light intensity profiles. Close to the Hopf threshold, a normal form is derived which leads to
a complex Ginzburg-Landau equation where a bi-Laplacian instead of a Laplacian drives the formation of
spirals. At resonance the predictions of the normal form are compared with the numerical observations of the
full equations. Above the Hopf threshold, the spirals destabilize, breaking into slowly evolving patterns with
small spirals and filaments. Further above the threshold, when both the Turing and Hopf bifurcations interplay,
a new spiral pattern emerges, with large notched arms.

DOI: 10.1103/PhysRevE.71.036224 PACS numberssd: 89.75.Kd, 42.65.Sf, 42.65.Yj, 47.54.1r

I. INTRODUCTION

A large variety of spiral patterns observed in nature
sshells, sunflowers, galaxies, etc.d and in the laboratory have
motivated extensive work to understand what such diverse
structures have in common. It was shown that the dynamical
processes leading to the formation of spirals can be quite
different and depend on the specific features of systemsf1g,
even if the spirals are identical from the topological point of
view. In optics a lot of effort was done to observe and to
understand these fascinating patterns, theoretically and ex-
perimentally. There are two sorts of problems, one concern-
ing the propagation of vortices in nonlinear media, which is
ruled out by the nonlinear Schrödinger Eq.f2g, and the other
one, like here, concerns the formation of vortices in nonlin-
ear resonators. Spiral waves were first predicted by Coulletet
al. f3g who show that the Maxwell-Bloch equations for class-
A lasers with large Fresnel number display numerical solu-
tions with zero-intensity points—i.e., phase defects. The au-
thors prove that the laser equations can be reduced to the
famous complex Ginzburg-LandausCGLd equation close to
the onset of lasing and for negative detuning. This equation
is known to be a paradigm for the study of spirals, vortices
and defect turbulence solutionsf4,5g, in fluid mechanics.
Such a link between lasers and fluids was extended to the
case of small positive detuning where traveling waves are
favored, leading to a complex Swift-HohenbergsCSHd equa-
tion, which was recognized as the “universal description” of
lasers dynamicsf6g. The CSH equation was also derived for
photorefractive oscillatorsf7g, for a laser with injected signal
f8g, and for nondegenerate parametric oscillatorsf9g.

The first experimental evidence of optical vortices was
carried out in resonators with small Fresnel numberf10g.
These experiments were described with the help of trans-
verse empty resonator modes which are linear modes. Later
on, nonlinear defect patterns were observed in resonators
with photorefractive medium first with plane mirrorsf11g,
then using self-imaging resonatorsf7g. The latter experiment
displays patterns in qualitative agreement with those of the

CSH-laser equation. Close to the lasing threshold, a square
lattice of vortices of alternating chargeslike an alkali-halide
crystald is observed. As the pump intensity increases, the
appearance of mobile defects leads to an irregular lattice, and
finally domains of traveling waves separated by a row of
vortices are formed far away from threshold. Other spiral
waves formation have been reported in a coherently pumped
three-level laserf12g.

All the above mentioned optical spirals can be visualized
only in the realsor the imaginaryd part or in the phase of the
field. They are called phase spirals. However, spiral struc-
tures and spiraling fronts can exist in the intensity field pro-
file. Indeed, spiral intensity structures were first reported in
nonlinear optics by Lodahl, Bache, and Saffmanf13g, in the
internally pumped optical parametric oscillatorsIPOPOd.
The linear stability analysis shows that these spirals arise as
a result of the existence of a secondary Hopf bifurcation with
a finite wave number and appear well above the threshold. A
striking counterclockwise rotating spiral intensity pattern
was recently observed experimentally in a semicavity with
sodium vapor in presence of inhomogeneous pumping and
boundary effectsf14g. The numerical solutions, which agree
with the experiment, allow to interpret the multiarmed spi-
raling patterns as a result of the interaction between Hopf
and Turing instabilities.

Other classes of spirals appearing in the intensity of the
field are the spiraling frontsf1g, like those found in the Far-
aday experiment or in periodically forced chemical systems
f15g. This behavior has been reported numerically in the
type-II OPO with four interacting fieldsf16g and also in the
optical parametric oscillator that converts a pump field at
frequency 3v into signal and idler fields at frequency 2v and
v s3:2:1 OPOd with the help of a second crystal generating a
second harmonicf17g. The three-armed spirals numerically
observed in the latter case were explained by reducing the
model equations to a CGL equation with forcing. The spiral-
ing fronts spontaneously nucleate from noise at points where
domain walls connecting the different phase states coalesce
f18g.
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We consider the degenerate optical parametric oscillator
sDOPOd under the presence of the saturable absorbersSAd.
Due to the richness of its dynamical behavior, this system
has been a subject of recent investigations. Stationary and/or
time-dependent localized structures and mixed-mode solu-
tions f19g, moving asymmetric solitonsf20,21g, and the sta-
bilization of the phase locked hexagonal structures below the
lasing thresholdf21,22g are the phenomena that were pre-
dicted.

In this paper, we show numerically that this system sup-
ports spiral structures and defect turbulent patterns in the
intensity profiles of both signal and pump fields. As in the
case of the IPOPOf13g, the intensity spirals are formed
above a secondary Hopf bifurcation. However, the linear
analysis proves that they are found in a different dynamical
regime; namely, they exist just above the Hopf instability
threshold associated with a zero wave number and not with a
finite wave number. A weakly nonlinear analysis is per-
formed in the simple situation where both fields are resonant
with the optical cavity—i.e., zero cavity detunings. In that
regime, analytical calculations in the vicinity of the critical
point associated with the Hopf bifurcation allow us to con-
struct a normal-form equation: namely, a CGL-type equation
where the spatial coupling is provided by the bi-Laplacian,
the Laplacian term being absent. We extend this study to
near-resonant conditions, which leads to add to the normal
form a Laplace operator with a small coefficient proportional
to the detuning parameter. This contribution has only a minor
effect on the intensity spiral formation. For several sets of
parameters, the predictions of the nonlinear analysis are
compared with the numerical simulation of the mean field
model presented in this paper. In addition we performed a
comparison with the full propagation modelfsee Eqs.s1d—
s6d of f21gg. The agreement is good close to the Hopf thresh-
old. Far from that threshold the nonlinear analysis is no
longer valid. In that regime, the spiral structures break up
into spiraling wormlike filament. This behavior is attributed
to the growth of new spatial modes when the homogeneous
steady state becomes unstable with respect to the Turing in-
stability. More importantly, in the regime of strong interac-
tion between Hopf and Turing modes, spiral intensity struc-
tures developed notched arms, named zigzag spirals.

In the next section, we briefly introduce the model equa-
tions for the degenerate optical parametric oscillator
sDOPOSAd together with the linear and weakly nonlinear
analysis leading to the complex order parameter amplitude
equation. The numerical results and comparison with the
analytical predictions are presented in Sec. III. Finally, we
conclude in Sec IV.

II. LINEAR AND WEAKLY NONLINEAR ANALYSIS

A. Model equations

We suppose that the frequency conversion process takes
place in a ring cavity with flat mirrors that is resonant at both
frequenciessparametric amplificationd. An external fieldE at
frequencyv0 is injected into the cavity where it undergoes
the down-conversion process: one photon with frequencyv0
is absorbed and two photons with frequencyv0/2 are emit-

ted. We assume the presence of a saturable absorber modeled
by a collection of two-level atoms that leads to an intensity-
dependent effective absorption coefficient, supposed to act
selectively on the frequencyv0/2. We assume that the me-
dium relaxes much faster than the cavity field. We limit our
study to the type-I parametric amplification that does not
involve polarization degrees of freedom due to the birefrin-
gence of thexs2d crystal. In the good cavity limit and under
the mean-field approximation, the combined influence of the
parametric amplification and the saturable absorber is de-
scribed by the following set of dimensionless partial differ-
ential equationsf21g

]tA0 = − gfs1 + iD0dA0 + A1
2 − Eg +

i

2
DTA0, s1d

]tA1 = − s1 + iD1dA1 + A1
*A0 −

RA1

1 + SuA1u2
+ iDTA1. s2d

The complex amplitudesA0,1 are the normalized slowly
varying envelopes of the pump and signal fields at frequency
v0, andv0/2, respectively. The parametersD0,1 are the cav-
ity detunings of the fields.R is the field-matter interaction
coefficient in the absorber, andS measures its saturability.g
is the ratio of transmitivity for the two fields, andDT is the
Laplacian acting on the transverse coordinatesr =sx,yd.

For simplicity, we will assume that both frequenciesv0
and v0/2 are perfectly resonant with the cavityD0=D1=0.
As we shall see in the following, our analysis will be valid
also for small detuning cases. At resonance, when the control
parameterE increases, the first bifurcation occurs at the las-
ing threshold Eth=1+R. Above that critical point, two
equivalent homogeneous steady-state solutionssHSS’sd ex-

ist, Ā0, ±Ā1. For real values ofE, the solutions are real and

satisfy the relationsĀ0=E− Ī1 and E=1+Ī1+R/ s1+SĪ1d, Ī1

= uĀ1u2. The linear stability analysis of the HSS’s shows the
existence of a soft and a hard type of modes that can affect
the stability of these HSS’s. The former refers to mode aris-
ing from a modulationalsoften called a Turingd instability
leading to steady-state periodic dissipative structures, while
the latter refers to oscillatory instability such as a Hopf bi-
furcation associated with the homogeneous self-pulsing. The
critical wave number at the Turing instability and the fre-
quency of the homogeneous Hopf bifurcation as well as the
thresholds associated with these instabilities are given in
f21g. The relative separation between these two thresholds,
on the steady-state response curve, is determined by the pa-
rameter valuesR andS. The interaction between these insta-
bilities has been studied by using the normal-form analysis in
the regime where they are close one to anotherf19g. Here we
consider situations where the Hopf bifurcation occurs before
the Turing one, as the control parameterE is increased. The
results from the linear stability analysis of the HSS are illus-
trated in Fig. 1 where the growth rate is plotted as a function
of the wave number. This curve is obtained for the input field
in the parameter rangeEH,E,ET whereEH andET are the
thresholds associated with Hopf and Turing instabilities, re-
spectively. The left curve domain, associated with the Hopf
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instability, has a most unstable mode with zero wave number
sk=0d and a finite frequencysv=vHd, whereas the right one,
associated with the Turing instability, has a finite wave num-
ber skTÞ0d and a zero frequencysv=0d. In the following
subsection, we suppose that Hopf and Turing thresholds are
well separated from one to another, and we construct a nor-
mal form valid in the vicinity of the homogeneous Hopf
bifurcation characterized byk=0, v=vH.

B. Weakly nonlinear analysis

We focus on the case of zero detunings and generalize the
calculations hereafter to finite but small detunings. For this
purpose, we introduce deviations from the HSS asA0,1

=Ā0,1+a0,1. Inserting these relations in Eqs.s1d and s2d, we
obtain

]ta0 = − ga0 − gs2Ā1a1 + a1
2d +

i

2
DTa0, s3d

]ta1 = − a1 + sĀ0a1
* + Ā1

*a0d + a0a1
* − RFsa1,a1

*d + iDTa1,

s4d

Fsa1,a1
*d =

Ā1 + a1

1 + SuĀ1 + a1u2
−

Ā1

1 + SuĀ1u2
. s5d

We then decomposea0,1 into its real and imaginary parts
as a0,1=x0,1+ iy0,1. Equationss3d and s4d lead to the set of
equations of the form ]tu= fsu,DT,Ed with u
=sx0,x1,y0,y1dtr, where the superscripttr means transpose
vector andf = fuu+Nsu,DTd. The linear partfu is composed
of two diagonal 232 blocks,

fu =1
− g − 2gĀ1 0 0

Ā1 z 0 0

0 0 − g − 2gĀ1

0 0 Ā1 g8
2 , s6d

with z=2RSI1/D2, g8=−2s1+R/Dd, andD=1+SuĀ1u2.

The Hopf bifurcation occurs when one or more eigen-
value has a vanishing real partsl= ivHd. The determination
of the Hopf threshold involves the 232 matrix located in the
left upper quadrant only. The eigenvalue problem]tu=lu
gives rise to the relationg=z which determines the Hopf
threshold intensity

Ā1H
2 =

1

S
FR

g
− 1 ±ÎR

g
SR

g
− 2DG s7d

and the corresponding critical frequencyvH
2 =s2Ā1H

2 −gdg. At
that Hopf bifurcation the eigenvector issp0,p1,0 ,0dtreivHt.

To construct the amplitude equation, we consider the fol-
lowing expansions in terms of a small parameter« measuring
the distance from the Hopf bifurcation:E=EH+«2 and u

=«us1d+«2us2d+«3us3d+¯, with EH=1+Ī1H+R/ s1+SĪ1Hd
and us1d=Asp0,p1,0 ,0dtreivHt. We rescale time and space as
]t=]t0

+«2]t2
+¯ and]x,y=«1/2]X,Y+¯ .

Proceeding on to the higher-order inhomogeneous prob-
lem, we derive the amplitude equation for the critical mode
associated with the Hopf bifurcation by formulating the ap-
propriate solvability conditionsssee Appendix Ad

]tA = «2mA − c3uAu2A − c1DT
2A, s8d

with complex coefficientsm=mr + imi, c3=c3r + ic3i, and c1
=c1r + ic1i. After rescaling,Îc3r /e2mrAe−imit→A, e2mrt→ t,
x4e2mr /c1r →x4, andy4e2mr /c1r →y4, Eq. s8d becomes

]tA = A − s1 + ibdDT
2A − s1 + icduAu2A, s9d

with b=c1i /c1r andc=c3i /c3r. Equations9d may be seen as a
CGL type of equation with a bi-Laplacian or a CSH equation
with a critical wave number equal to zero and no Laplacian
term. The absence of a Laplacian in the amplitude equation
s9d is due to the fact that Eqs.s1d ands2d are invariant by the
transformationx→ ix, A0→A0

* , and A1→A1
* at resonance.

The parametersb andc are related to the physical parameters
g ,R,S of Eqs.s1d and s2d, but are independent of the input
pump amplitude value. If, for example, we choose the pa-
rameters of Fig. 1—namely,R=4.5, S=0.1, andg=1—the
coefficients are m=0.38+i0.82, c3=0.94+i0.33, and c1
=0.17−i0.015, leading tob=−0.09 andc=0.35.

In the case of small detuningsD0,1=eD0,1
s1d, d=eds1d, one

can easily show that Eq.s9d becomes, after rescaling, of the
form

]tA = A + dDTA − s1 + ibdDT
2A − s1 + icduAu2A, s10d

where the complex coefficientd is a linear combination of
the detunings and the coefficientsb andc are modified with
respect to the expressions given above. The normal forms10d
is an equation of the CSH type where the coefficient of the
Laplacian term is small. In order to clarify the roles of the
Laplacian and bi-Laplacian terms on the long-time dynamics
of Eq. s9d we have compared the numerical solutions of Eqs.
s9d and s10d and the CGL equation

]tA = A + s1 + ibdDTA − s1 + icduAu2A. s11d

To this end, we chose the parametersb=4 andc=−1, we
use random initial conditions, and periodic boundaries in

FIG. 1. Linear stability analysis of the lasing solution of Eqs.s1d
ands2d: maximum growth rate versus the wave number. Parameters
areR=4.5,S=0.1,g=1, andE=6.5. The left domain corresponds to
the Hopf bifurcation with a frequency of order unity, and the right
domain corresponds to a Turing instability with zero frequency.
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both transverse directions. Under these conditions, Eq.s9d
leads to a large stable spiral, while this case belongs to the
defect turbulent regime of the CGL, Eq.s11d, where no
stable spiral exists. In the case of Eq.s10d, with a small
coefficient in front of the Laplacian operator, written asd
=ds1+ibd, the final state is also a spiral ford increasing up to
0.5. Therefore the Laplacian term in Eq.s10d plays a negli-
gible role in the pattern selection mechanism, for small val-
ues of the detunings, that justifies to focus on the case of zero
detunings.

Since Eq.s9d has not yet been investigated to our knowl-
edge, we derive in Appendix B the condition for stability of
plane-wave solutions of the formA=FeisQ.r−wt+fd, where the
amplitudeF and the frequencyv depend on the wave num-
ber Q= uQu,1, through the relationsF2=1−Q4 and v=c
+sb−cdQ4. The homogeneous oscillating statesQ=0d, is

shown to be stable with respect to long-wavelength pertur-
bations if

1 + bc. 0, s12d

which is identical to the Benjamin-Feir relation for the usual
CGL Eq. s11d. As an example, the conditions12d is fulfilled
for the parameter set chosen in Fig. 1scf. the b,c values
given aboved, for which a flat intensity profile, oscillating
homogeneously in time, is expected to be a solution of the
DOPOSA equations.

III. NUMERICAL RESULTS

We performed numerical simulations of the mean-field
model, Eqs.s1d and s2d, and we extend our study to the
propagation model that describes correctly the propagation
of the fields through the two nonlinear mediafsee Eqs.s1d—
s6d of f21gg. In this description, the fields are assumed to
have equal group velocity inside both media. Our numerical
analysis allows us not only to check the above theoretical
predictions but also to check the validity of the mean-field
approximation that is regularly used in nonlinear optics. Pre-
vious studies of localized pattern formation have revealed,
however, that the mean-field approximation is valid for small
intensity patterns onlyf21,23g. The mean-field model is
solved by using a code based on a finite-difference implicit
Crank-Nicholson scheme and the propagation model by us-
ing a split and step spectral method. In both models we use
mostly periodic boundary conditions in the two-dimensional
transverse plane, and the number of grid points is from
1283128 up to 5123512.

In the parameter range investigated here, four different
solutions can be obtained for the same value of the pump
amplitudeE.EH, depending on the initial conditions. Two
of them are time-independent solutions, the localized struc-
tures and the periodic solutions. They result from a locking
between the two equivalent out-of-phase signal solutions
f24g and are not considered here. The two other solutions,
which interest us, oscillate in time with frequencyvH and are
formed around one of the HSS’s, the signal amplitude being
positivesor negatived on the whole transverse plane. One of
these solutions has a homogeneous profile; the other presents
defects. The homogeneous oscillating solution, which is ex-

FIG. 2. Amplitude diagram of the limit cycle. Comparison be-
tween the numerical models and the nonlinear analysis prediction
ssolid lined. Parameters areR=4.5, S=0.1, andg=1 for sad andR
=2.3, S=0.4, andg=1 for sbd. The diamonds correspond to the
limit cycle amplitude for the mean-field model, the stars for the
propagation model. The dotted-dashed line in the middle draws the
HSS amplitude.

FIG. 3. Steadily rotating spiral forR=4.5, S=0.1, andE=6.4
obtained after a long transient,dx=0.78, and the grid is 1283128
points.
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pected to be stable if the condition 1+bc.0 is fulfilled scf.
Sec. IId, displays in-phase oscillating time traces in the whole
transverse plane. In the case of solutions with defects, local
time traces are phase shifted. We shall focus now on these
two time-dependent solutions.

In order to obtain a positive value for ResA1d and avoid
the formation of the solutions connecting the two HSS
branches, we start from the initial conditionA0st=0,x,yd
=Ā0, A1st=0,x,yd=Ā1+xsx,yd, where the noisexsx,yd is not
too largesits standard deviationsx is always smaller than

Ā1d. Below the Hopf threshold,E,EH, the initial noise de-

cays, and the final solution issĀ0,Ā1d, indicating that the
Hopf bifurcation occurs supercritically. Above the Hopf
threshold,E.EH, the final solution depends onsx.

In the two next subsections, we describe the numerical
solutions of the DOPOSA equationsfEqs.s1d ands2d and the
propagation modelg for different values of parametersR and

S, the ratio of transmitivity for the two fieldsg being fixed to
g=1.

A. Study of the homogeneous solution

For small noise,sx! Ā1 and forE.EH, numerical solu-
tions of the DOPOSA equations show the same behavior for
the values of parameters that we have chosen: long-
wavelength modulations appear in the transient, whose am-
plitude tends to zero asymptotically as time increases. This
behavior is in agreement with our nonlinear analysis. Indeed
when using the values of coefficientsb andc derived in Sec.
II B, we check that the relation 1+bc.0 is fulfilled, indicat-
ing that our numerical investigation concerns the stable
Benjamin-Feir domain. The bifurcation diagrams given in
Figs. 2sad and 2sbd, for two different cases, shows that the
numerical amplitude of the limit cycle agrees with the pre-
diction of the nonlinear analysisuAsEdu=ÎsE−EHdmr /c3r

FIG. 4. Spiral break up re-
gime. Evolution during one pe-
riod. sad t, sbd t+T/5, scd t+2T/5,
sdd t+3T/5, and sed t+4T/5.
sbd—sed show one-fourth part of
the full patternfupper part in the
middle of sadg. Parameters are the
same as in Fig. 3, exceptE=7.1,
dx=0.5, and the grid is 2003200
points.
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close toEH. The curves obtained with the DOPOSA models
depart from the theoretical predictions of the weakly nonlin-
ear analysis for largeE−EH. Moreover, in this regime, the
mean-field model clearly fails to describe large-amplitude
solutions because propagation effects become significant, as
expected from our previous studies of localized structures
f2g. For example, Fig. 2sbd shows that the two models agree

for E&5.5 only. The prediction of the weakly nonlinear
analysis presented in Sec. II B. shows that the frequency of
the limit cycle, i.e., spatially homogeneous solutions oscillat-
ing in time, depends on the control parameter values accord-
ing to vsEd=vH+misE-EHd. Our numerical simulations are
in good agreement with this prediction. For example in the
case Fig. 2sad, the deviation between the numerics and the
theory is about 10% atE=8.8, which is noticeably smaller
than the deviation of the amplitude.

B. Solutions with defects

For moderate noise,sx& Ā1, numerical simulations of the
DOPOSA equations show that spiral patterns are formed
close to the Hopf thresholdsE*EHd, as illustrated in Fig. 3,
for the parameter values of Fig. 2sad, R=4.5 andS=0.1. Dur-
ing one period the spirals rotate with the frequencyvH
around their core. The spiral core amplitude is constant and
equal to the HSS value. We have checked that periodic snap-
shots correspond to the quasifrozen spiral solutions of Eq.
s9d for the correspondingb and c values given in Sec. II.
These spirals also occur in the numerical simulations of the
CGL, Eq.s11d, for small values ofb andc and were recently
identified as a liquid vortex statef26g. For the values chosen
here for R and S, the Hopf and Turing instabilities have

FIG. 5. Zigzag spirals. Evolu-
tion of the signal intensity along
one period.sad t, sbd t+T/4 , scd
t+2T/4 , andsdd t+3T/4. Param-
eters are the same as in Fig. 3, ex-
cept for E=8.8. Positive maxima
are on the spiral arms; few nega-
tive peaks are visible. The grid is
5123512 anddx=0.234.

FIG. 6. Chaos. Parameters areR=2.3, S=0.4, andE=5.5 sEH

=3.74d. The grid is 2563256 with dx=0.50.
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threshold valuesEH=6.385 andET.7.1, respectively. In-
creasing the control parameterE, the time trace becomes
more and more chaotic and the quasifrozen spirals progres-
sively break into smaller ones. When approaching the Turing
threshold—i.e.,E&ET—only wormlike and spiraling fila-
ments exist.This behavior is illustrated in Fig. 4. During one
period, the collision and separation processes of neighboring
filaments is represented in Fig. 4 at successive timest
+nT/5, n=0, 1, 2, 3, 4. The far-field pattern displays mainly
components with wave numbers belonging to the whole
Hopf domainsleft domain of the linear analysis curve in Fig.
1d. This spiral breakup pattern looks like those obtained close
to the defect turbulent regime of CGLf4g or in chemistry
f15,27g. Nevertheless, its slow dynamics differs from the
CGL turbulent pattern one. Our results are closer to those
previously reported in the physiological model describing the
cardiac tissuef28g, where the breakup of an isolated spiral
led to a quasifrozen state of small spirals. But in this model,
the breakup of the spiral was attributed to the large variations
of the rotation period which do not occur in the DOPOSA.

For larger input field amplitude—i.e., forE.ET—the
arms become larger and get modulations. ForE,8.5, each
arm splits into a central part and lateral damped wings. For
E,8.7, a new spiral pattern emerges with notched arms,
somehow remiscent of the “zigzag spirals” found in a gas
discharge devicef29g. Its behavior is illustrated in Fig. 5,
which clearly shows the behavior of the zigzag spirals during
one period, with collision and separation processes. These
high-intensity zigzag spirals coexist with few localized struc-
tures, which act as sources nucleating defects at time inter-
vals equal to one period. Note that in Fig. 5, the real part of
the signal field is positive everywhere, except around the
extrema of the peaks where it is negative. The spatial Fourier
spectrum displays a central spot, with wave numbers smaller
than unity—i.e., belonging to the Hopf instability domain
sleft curve in Fig. 1d—and an outer ring which becomes
more and more intense asE increases. In the ring the wave
number values are comparable with those of the periodic
stationary pattern solutions such as rolls, hexagons, or
squares. Therefore the zigzag spirals are an example of
mixed-mode solutions resulting from the interaction between
the Hopf and Turing instabilities.

This result is confirmed by looking at the sequences ob-
tained for other parameter values. Let us consider the case
R=4.5 andS=0.05, where the Hopf and Turing thresholds
are more separated than above. The spirals are not so beau-
tiful as in the case of Figs. 3–5, but the same sequence of
spirals, spiral portions, and zigzag spirals has been observed.
Another case,R=2.3, S=0.4, corresponding to Fig. 2sbd, is
especially interesting because there is no Turing instability
sfor E.EH the growth rate of the Turing modes decreases
with E, differently from the cases described aboved. Spirals
are observed close to the Hopf threshold, but forE@EH no
zigzag spirals appear, but chaotic structures with interlaced
filaments and craters, as shown in Fig. 6.

In the numerical simulations, we checked that the mean-
field model displays the same sequences as the propagation
model. However, there are noticeable differences concerning
the amplitude of the pattern and the range of its existence, as
expected from our study in Fig. 2. Note that we have re-

stricted our study to an isotropic system where the external
field is a plane-wave beam. However, the inhomogeneities
induced by the pump profile and the finite geometry are both
important problems in optics. We show numerically that the
formation of spiral patterns reported can also be obtained
with a Gaussian or hyper-Gaussian profile of the input field
amplitude. This numerical result is illustrated in Fig. 7. This
problem has been discussed in the frame work of the CGL
equationf30g.

IV. CONCLUSION

We have investigated analytically and numerically the for-
mation of spiral pattern in the degenerate optical parametric
oscillator with a saturable absorber, which displays succes-
sive homogeneous Hopfswith a zero wave numberd and Tur-
ing instabilities, with well-separated thresholds. We have
performed a weakly nonlinear analysis in the vicinity of the
Hopf bifurcation at the perfect resonance conditions—i.e.,
for zero cavity detunings. This procedure allows us to derive
an amplitude equation of the Ginzburg-Landau type but with
a bi-Laplacian rather than a simple Laplace operator. This
derivation has been extended to more general

FIG. 7. Spirals with circular input beam. Intensity of the signal
field, obtained with the propagation model. Parameters areR=4.5,
S=0.1, and g=1. sad E=6.4, and grid is 2563256 points, dx
=0.58.sbd E=8.7, and grid is 5123512 points,dx=0.31.
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situations: namely, close to the resonant condition which is
obtained for small detuning parameters. Close to the Hopf
threshold the predictions of the normal form equation for the
amplitude of the limit cycle and its frequency are in good
agreement with the numerical solutions of the DOPOSA
equations. Our analysis reveals that the stability criterion for
the homogeneous oscillating solution is 1+bc.0 , like in
the case of the CGL equation.

Numerical simulations show various patterns with de-
fects, in particular stationary spirals close to the Hopf thresh-
old EH, evolving into small spiral portions asE approaches
the Turing thresholdET, then into a zigzag spiral pattern
which is an example of a two-dimensional Hopf-Turing
mixed-mode solutions.

The present study has emphasized the rich behavior of the
DOPOSA in the regime of strong interaction between the
Turing and the Hopf bifurcations. We have elucidated the
formation of spirals close toEH, but many interesting ques-
tions remain unsolved, such as properties of the disordered
states and the transition leading to their formationf26,31g.
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APPENDIX A: AMPLITUDE EQUATION CLOSE TO EH

Close to the Hopf threshold, we use the expansions given
in Sec. II B just before Eq.s8d and the HSS expansion

sĀ0,Ā1, Ī1d=sĀ0H ,Ā1H , Ī1Hd+«2sA0
s2d ,A0

s2d ,I1
s2dd with A1

2= I1.
The eigenvector of the adjoint problem, associated with the
submatrix

S g − Ā1H

2gĀ1H − g
D , sA1d

with eigenvalueivH, is sq0,q1,0 ,0dtreivHt. In the following

we choose p0=sivH−gd / Ā1H, q0=p1=1, and q1=sivH

+gd / Ā1H, which givesp0q0+p1q1=2ivH / Ā1H.
The second-order expansion of the stationary solution

provides I1
s2d=D2/ sD2−RSd, A0

s2d=−RSI1
s2d /D2, I1

s2d /D2, and

A1
s2d , =I1

s2d /2Ā1, where the indexD=DH sin the following, the
index H is omitted when referring to the threshold valued.

At order «2 the mean-field model writess]t0
− fudus2d

=gs2d with

gs2d =1
− gsx1

s1dd2

x0
s1dx1

s1d− RFx
s2d

1

2
DT

s1dx0
s1d

DT
s1dx1

s1d
2 , sA2d

where Fx
s2d= tfx1

s1d2, tf =4A1
3S2/D3−3A1S/D2, and the trans-

verse Laplacian operator is such thatD' sx,yd=«D
' sX,Yd
s1d .

EquationsA2d gives

s]t0
− fudus2d = A2e2ivt1

− gp1
2

p0p1− Rtfp1
2

0

0
2 + uA2u

31
− 2gup1u2

p0p1
* + c . c . − 2Rtfup1u2

0

0
2

+ DTAeivt1
0

0

p0/2

p1

2 + c . c. sA3d

The solvability condition is fulfilled since]t1
u=]f /]E

=0.
The inverse matrix is

Mn = sniv − fud−1 =1
a−snd bsnd 0 0

csnd a+snd 0 0

0 0 a−8snd b8snd
0 0 c8snd a+8snd

2 ,

sA4d

where a±snd=sniv±gd /mn, bsnd=−2A1g /mn, csnd=A1/mn,
mn=sniv+gdsniv−gd+2gI1, a±8snd=sniv±g8d /mn8, b8snd=
−2A1g8 /mn8, c8snd=A1/mn8, and mn8=sniv+gdsniv−g8d
+2gI1.

A particular solution of Eq.sA3d is

us2d = A2e2ivt1
x0

s2,2vd

x1
s2,2vd

0

0
2 + uAu21

x0
s2,0d

x1
s2,0d

0

0
2

+ DT
s2dAeivt1

0

0

y0
s2,vd

y1
s2,vd
2 + c . c . , sA5d

with

x0
s2,2vd = − gp1

2a−s2d + sp0p1− Rtfp1
2dbs2d, x1

s2,2vd

= − gp1
2cs2d+ sp0p1− Rtfp1

2da+s2d,
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x0
s2,0d = − 2gup1

2ua−s0d + sp0p1
* + c . c . − 2Rtfup1

2udbs0d,

x1
s2,0d = − 2gup1

2ucs0d + sp0p1
* + c . c . − 2Rtfup1

2uda+s0d,

y0
s2,vd =

1

2
p0a−8s1d + p1b8s1d, y1

s2,vd =
1

2
p0c8s1d + p1a+8s1d.

At order «3 the mean-field model writess]t0
− fudus3d

=gs3d with

gs3d =1
− ]t2

x0
s1d − 2gA1

s2dx1
s1d − 2gx1

s1dx1
s2d − 1

2DTy0
s2d

− ]t2
x1

s1d + A0
s2dx1

s1d + A1
s2dx0

s1d + x0
s2dx1

s1d + x1
s2dx0

s1d− RFx
s3d − DTy1

s2d

gy0
s3d

gy1
s3d

2 , sA6d

where Fx
s3d= tfs2A1

s2dx1
s1d+2x1

s1dx1
s2dd+ t3x1

s1d3, with t3
=8A1

2S2/D4−S/D2.
The solvability condition becomes

]t2
A = mA − c3uAu2A − c1DT

s1d2A, sA7d

with

m =
1

p0q0 + p1q1
hq0s− 2gA1

s2dp1d + q1sA0
s2dp1 + A1

s2dp0

− 2RtfA1
s2dp1dj ,

c3 =
− 1

p0q0 + p1q1
h− 2gq0sx1

s2,2vdp1
* + x1

s2,0dp1d + q1sj ,

c1 =
− 1

p0q0 + p1q1
s
1

2
q0y0

s2,vd + q1y1
s2,vdd, sA8d

where

s = fx0
s2,2vdp1

* + x1
s2,0dp1 + x1

s2,2vdp0
* + x1

s2,0dp0 − 2Rtfsx1
s2,2vdp1

*

+ p1x1
s2,0dd − 3Rt3p1

2p1
*g.

In terms of the original variables, one obtains the amplitude
equation

]tA = «2mA − c3uAu2A − c1DT
2A. sA9d

APPENDIX B: STABILITY OF WAVE SOLUTIONS
OF Eq. (9)

Equations9d admits a family of plane-wave solutions, like
the CGL Eq.s11d,

A = FeisQ·r−vt+fd, sB1d

where the amplitudeF and the frequencyv depend on the
wave numberQ= uQu,1,

F2 = 1 −Q4,

v = c + sb − cdQ4. sB2d

The stability criterion of these solutions is derived from a
standard stability analysis involving the value of the under-
lying wave vectorQ and, of course, parametersb andc, as in
the case of the usual CGL equation. The perturbed solution
A=FeisQ·r−vtd +da+eisQ+kd·r+sl+ivdt+da−eisQ−kd·r+sl*−ivdt leads
to the eigenvalue problem

U l + a F2s1 + icd
F2s1 − icd l + b

U = 0, sB3d

with

a = F2 + f+ + iscF2 + bf+d,

b = F2 + f− − iscF2 + bf−d, sB4d

and f±=k2±2Q ·k ,k= uk u. The solution of Eq.sB3d. is

lskd = − b8 ± Îb82 − g, sB5d

with b8=F2+k2+2ibQ ·k ,g=ab−F4s1−c2d. Expanding the
complex growth rate for smallk gives

l = − iVgk − D2k
2 − iVgk

3 − D4k
4 + Osk5d, sB6d

with

Vg = 4sb − cdQ2Qk,

D2 = 2s1 + bcdsQ2 + 2Qk
2d + 8Qk

2Q4s1 + c2d/s1 − Q4d,

Vg = 4QkHsb − cd +
2s1 + c2dQ2

1 − Q4 f4cQ4Qk
2/s1 − Q4d

− bsQ2 + 2Qk
2dgJ ,
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D4 = 1 +bc+
2

1 − Q4s1 + c2d − 8Q2Qk
2 + b2sQ2 + 2Qk

2d2

−
48

s1 − Q4d2bcQ4Qk
2sQ2 + 2Qk

2d

+
32

s1 − Q4d3s1 + 6c2 + 5c4dQ8Qk
4, sB7d

where Qk=Q ·k is the component ofQ parallel to k. The
longitudinal perturbations withk / /Q are the most dangerous
ones. The solutionssB1d are long-wave stable as long as the
phase diffusion coefficientsD2//,D4// are positive. Equations
sB7d give

D2// = 2Q2f3s1 + bcd − 4Q4s1 + c2d/s1 − Q4dg,

D4// = 1 +bc+ 2s1 + c2ds9b2 − 8d
Q4

1 − Q4 − 144bcs1 + c2d

3
Q8

s1 − Q4d2 + 32s1 + 6c2 + 5c4d
Q12

s1 − Q4d3 . sB8d

The stability of the homogeneous oscillating statesQ
=0d results from the fourth-order termswhile it is given by
D2// in the case of the CGL equationd which leads to the
condition 1+bc.0. At second order the range of stable
wave numbers obeys the relationQ,QE with

QE
4 =

1 + bc
7
3 + bc+ 4

3c2
. sB9d
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