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Spiral patterns, spiral breakup, and zigzag spirals in an optical device
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Above the first lasing threshold the degenerate optical parametric oscillator with saturable absorber displays
successive Hopf and Turing instabilities. Various spiral patterns and defect turbulent patterns are numerically
observed on the light intensity profiles. Close to the Hopf threshold, a normal form is derived which leads to
a complex Ginzburg-Landau equation where a bi-Laplacian instead of a Laplacian drives the formation of
spirals. At resonance the predictions of the normal form are compared with the numerical observations of the
full equations. Above the Hopf threshold, the spirals destabilize, breaking into slowly evolving patterns with
small spirals and filaments. Further above the threshold, when both the Turing and Hopf bifurcations interplay,
a new spiral pattern emerges, with large notched arms.

DOI: 10.1103/PhysRevE.71.036224 PACS nuni)er89.75.Kd, 42.65.Sf, 42.65.Y], 47.54r

I. INTRODUCTION CSH-laser equation. Close to the lasing threshold, a square

A large variety of spiral patterns observed in naturelattice of vortices of alternating chargike an alkali-halide
(shells, sunflowers, galaxies, 8tand in the laboratory have C'YSt@) is observed. As the pump intensity increases, the
motivated extensive work to understand what such divers@PpPearance of mobile defects leads to an irregular lattice, and

structures have in common. It was shown that the dynamicd|n@/ly domains of traveling waves separated by a row of

processes leading to the formation of spirals can be quitdortices are formed far away from threshold. Other spiral
different and depend on the specific features of sysidihs waves formation have been reported in a coherently pumped

even if the spirals are identical from the topological point Ofthrillal-[cﬁ\elzelllla%s:/ee[lrﬁ]e.ntione d ootical spirals can be visualized
view. In optics a lot of effort was done to observe and to P P

only in the real(or the imaginary part or in the phase of the

understand these fascinating patterns, theoretically and e¥eld. They are called phase spirals. However, spiral struc-

penmentally. Thgre are two sorts of prpblems, one Concemg,ag and spiraling fronts can exist in the intensity field pro-
ing the propagation of vortices in nonlinear media, which isgie " |ndeed, spiral intensity structures were first reported in
ruled out by the nonlinear Schrodinger Eg], and the other  hgnjinear optics by Lodahi, Bache, and Saffnia], in the
one, like here, concerns the formation of vortices in nonlin-internally pumped optical parametric oscillatGPOPO.
ear resonators. Spiral waves were first predicted by Caelllet The |inear stability analysis shows that these spirals arise as
al. [3] who show that the Maxwell-Bloch equations for class- 3 result of the existence of a secondary Hopf bifurcation with
A lasers with large Fresnel number display numerical solua finite wave number and appear well above the threshold. A
tions with zero-intensity points—i.e., phase defects. The austriking counterclockwise rotating spiral intensity pattern
thors prove that the laser equations can be reduced to theas recently observed experimentally in a semicavity with
famous complex Ginzburg-Landd@CGL) equation close to sodium vapor in presence of inhomogeneous pumping and
the onset of lasing and for negative detuning. This equatioloundary effect$14]. The numerical solutions, which agree
is known to be a paradigm for the study of spirals, vorticeswith the experiment, allow to interpret the multiarmed spi-
and defect turbulence solutiond,5], in fluid mechanics. raling patterns as a result of the interaction between Hopf
Such a link between lasers and fluids was extended to thand Turing instabilities.
case of small positive detuning where traveling waves are Other classes of spirals appearing in the intensity of the
favored, leading to a complex Swift-Hohenb&@SH) equa-  field are the spiraling frontgl], like those found in the Far-
tion, which was recognized as the “universal description” ofaday experiment or in periodically forced chemical systems
lasers dynamicg6]. The CSH equation was also derived for [15]. This behavior has been reported numerically in the
photorefractive oscillatorls7], for a laser with injected signal type-Il OPO with four interacting fieldgl6] and also in the
[8], and for nondegenerate parametric oscillafis optical parametric oscillator that converts a pump field at
The first experimental evidence of optical vortices wasfrequency & into signal and idler fields at frequencwand
carried out in resonators with small Fresnel numpHy]. w (3:2:1 OPQ with the help of a second crystal generating a
These experiments were described with the help of transsecond harmoni€17]. The three-armed spirals numerically
verse empty resonator modes which are linear modes. Lat@bserved in the latter case were explained by reducing the
on, nonlinear defect patterns were observed in resonatoraodel equations to a CGL equation with forcing. The spiral-
with photorefractive medium first with plane mirrof$1], ing fronts spontaneously nucleate from noise at points where
then using self-imaging resonatgi@. The latter experiment domain walls connecting the different phase states coalesce
displays patterns in qualitative agreement with those of th¢18].
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We consider the degenerate optical parametric oscillatored. We assume the presence of a saturable absorber modeled
(DOPO under the presence of the saturable abso(B&y. by a collection of two-level atoms that leads to an intensity-
Due to the richness of its dynamical behavior, this systemdependent effective absorption coefficient, supposed to act
has been a subject of recent investigations. Stationary and/selectively on the frequency,/2. We assume that the me-
time-dependent localized structures and mixed-mode soluwdium relaxes much faster than the cavity field. We limit our
tions[19], moving asymmetric soliton20,21], and the sta- study to the type-I parametric amplification that does not
bilization of the phase locked hexagonal structures below th@évolve polarization degrees of freedom due to the birefrin-
lasing threshold 21,27 are the phenomena that were pre-gence of they® crystal. In the good cavity limit and under
dicted. the mean-field approximation, the combined influence of the

In this paper, we show numerically that this system supparametric amplification and the saturable absorber is de-
ports spiral structures and defect turbulent patterns in thecribed by the following set of dimensionless partial differ-
intensity profiles of both signal and pump fields. As in theential equation$21]
case of the IPOPQ13], the intensity spirals are formed
above a secondary Hopf bifurcation. However, the linear
analysis proves that they are found in a different dynamical
regime; namely, they exist just above the Hopf instability
threshold associated with a zero wave number and not with a
finite wave number. A weakly nonlinear analysis is per- aA =—(1 +iA1)A1+A*1AO—&2 +iAAL. (2
formed in the simple situation where both fields are resonant 1+9A
with the optical cavity—i.e., zero cavity detunings. In that
regime, analytical calculations in the vicinity of the critical

point associated with the Hopf bifurcation allow us to con- o ondwn/2 respectively. The parameteks ; are the cav
H . : 0s ol &, . 1 -
struct a normal-form equation: namely, a CGL-type equatlor]ty detunings of the fieldsR is the field-matter interaction

where the spatial coupling is provided by the bi'I'apl"j‘(;i"jm'coefﬁcient in the absorber, af®imeasures its saturability:.

the Laplamant terrr:j_?emg ag'sehnf. V;/e textegéd tthltsh study t?? the ratio of transmitivity for the two fields, antk is the
near-resonant conditions, which 'eads to a 0 the norm aplacian acting on the transverse coordinatesx,y).

form a Laplace operator with a small coefficient proportional L . .
to the detuning parameter. This contribution has only a minor For simplicity, we will assume t_hat both fr_equencm@
: nd wy/2 are perfectly resonant with the caviyjp=A;=0.

effect on the intensity spiral formation. For several sets ofy< we shall see in the following, our analysis will be valid

parameters, the predictions of the nonlinear analysis are .
. . . . . also for small detuning cases. At resonance, when the control
compared with the numerical simulation of the mean field

model presented in this paper. In addition we performed garameteE increases, the first bifurcation occurs at the las-

comparison with the full propagation modskee Eqs(1)— ing _threshold E,=1+R. Above that critical_ point, two
(6) of [21]]. The agreement is good close to the Hopf thresh—?quﬂalen—t homogeneous steady-state S,OIUt((HSSQ ex-
old. Far from that threshold the nonlinear analysis is ndSt: Ao, +A;. For real values of, the solutions are real and

longer valid. In that regime, the spiral structures break upsatisfy the relation®dy=E-1, and E=1+|1+R/(1+S_|1), Iy

into spiraling wormlike filament. This behavior is attributed =|K1|2_ The linear stability analysis of the HSS'’s shows the
to the growth of new spatial modes when the homogeneougyistence of a soft and a hard type of modes that can affect
steady state becomes unstable with respect to the Turing ifne stability of these HSS's. The former refers to mode aris-
stability. More importantly, in the regime of strong interac- jng from a modulationaloften called a Turing instability

tion between Hopf and Turing modes, spiral intensity strucqeading to steady-state periodic dissipative structures, while
tures developed notched arms, named zigzag spirals. the latter refers to oscillatory instability such as a Hopf bi-

_ Inthe next section, we briefly introduce the model equa+yrcation associated with the homogeneous self-pulsing. The
tions for the degenerate optical parametric oscillatorcritical wave number at the Turing instability and the fre-
(DOPOSA together with the linear and weakly nonlinear gyency of the homogeneous Hopf bifurcation as well as the
analysis leading to the complex order parameter amplitudgnresholds associated with these instabilities are given in
equation. The numerical results and comparison with thea1] The relative separation between these two thresholds,

3P0 =~ (1 +iAg)Ag+ A2~ E] + 'EATAO. (1)

The complex amplitudesy ; are the normalized slowly
varying envelopes of the pump and signal fields at frequency

analytical predictions are presented in Sec. lll. Finally, wegn the steady-state response curve, is determined by the pa-
conclude in Sec IV. rameter valueR andS. The interaction between these insta-
bilities has been studied by using the normal-form analysis in
II. LINEAR AND WEAKLY NONLINEAR ANALYSIS the regime where they are close one to anofhe}. Here we

consider situations where the Hopf bifurcation occurs before
the Turing one, as the control paramefeis increased. The
We suppose that the frequency conversion process takessults from the linear stability analysis of the HSS are illus-
place in a ring cavity with flat mirrors that is resonant at bothtrated in Fig. 1 where the growth rate is plotted as a function
frequenciegparametric amplification An external fieldE at ~ of the wave number. This curve is obtained for the input field
frequencywy is injected into the cavity where it undergoes in the parameter rangg, < E<E; whereEy andE; are the
the down-conversion process: one photon with frequenycy thresholds associated with Hopf and Turing instabilities, re-
is absorbed and two photons with frequengy 2 are emit-  spectively. The left curve domain, associated with the Hopf

A. Model equations
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growth rate The Hopf bifurcation occurs when one or more eigen-

value has a vanishing real pak=iwy). The determination

of the Hopf threshold involves theX22 matrix located in the

left upper quadrant only. The eigenvalue problgm=\u

\ gives rise to the relationy=¢ which determines the Hopf
threshold intensity

— _1|R R/R
-0.1 Al == —-1£4/—|—-2 (7)
Sly y\vy

and the corresponding critical frequenef=(2A%;~7)y. At
k ) that Hopf bifurcation the eigenvector gy, p;,0,0" € “Ht,
To construct the amplitude equation, we consider the fol-
FIG. 1. Linear stability analysis of the lasing solution of E@3.  |owing expansions in terms of a small parameteneasuring
and(2): maximum growth rate versus the wave number. Parameterghe distance from the Hopf bifurcatiorE:EH+sz and u
areR=4.5,5=0.1,y=1, andE=6.5. The left domain correspondsto _ 1y, 2 2, .3 (3).... . . T
=suV+gU 9+ +--- with Ey=1+l14+R/(1+Shy)

the Hopf bifurcation with a frequency of order unity, and the right 1 trgont ]
domain corresponds to a Turing instability with zero frequency. 2ndU —ZA(pO,pl,O,O) '/zwe rescale time and space as
r?t:é’to'i's at2+"' and(yxyy:b‘l axyy'i'"' .

instability, has a most unstable mode with zero wave number Proceeding on to the higher-order inhomogeneous prob-

(k=0) and a finite frequencyw=wy,), whereas the right one, €M, We derive the amplitude equation for the critical mode

associated with the Turing instability, has a finite wave num_assoqated with _the HOpf. l_3|furcat|on by fo_r mulating the ap-

ber (kr#0) and a zero frequenciw=0). In the following  ProPriate solvability conditiongsee Appendix A

subsection, we suppose that Hopf and Turing thresholds are AA = e2uA — Cgl APA - ¢, A3A, (8)

well separated from one to another, and we construct a nor- o ) )

mal form valid in the vicinity of the homogeneous Hopf With complex coefficientsu= g, +iw, C3=Cy +icy, and ¢,

bifurcation characterized by=0, w=w,. =cy+icy. After rescaling, Vcg /€, A€ = A, ut—t,
x*?u, /¢y — x4, andy*e?u, /¢ —y*, Eq. (8) becomes

B. Weakly nonlinear analysis L2 .
GA=A-(1+ib)A2A - (1 +ic)|A?A, (9)

We focus on the case of zero detunings and generalize the
calculations hereafter to finite but small detunings. For thiswith b=c;;/c,, andc=cg;/c5.. Equation(9) may be seen as a
purpose, we introduce deviations from the HSS /&g,  CGL type of equation with a bi-Laplacian or a CSH equation
=K0 1+ag 1. Inserting these relations in Eqd) and(2), we  With a critical wave number equal to zero and no Laplacian
obtain term. The absence of a Laplacian in the amplitude equation

) (9) is due to the fact that Eq§l) and(2) are invariant by the
980 = - yag— Y(2Aa +a2)+I—A a (3y transformationx—ix, A,— Ay, and A, —A] at resonance.
‘ 4 e T )T 5 A, The parameteris andc are related to the physical parameters
v,R,S of Egs.(1) and(2), but are independent of the input
— a4+ (A +A A+ aa — N g pump amplitude value. If, for example, we choose the pa-
%y =~ 2y + (Aoly + Asd) + 08, ~ RF(@y.ay) 14y, rameters of Fig. 1—namely\R=4.5, S=0.1, andy=1—the
(4) coefficients are ©=0.38+0.82, c3=0.94+0.33, and ¢,
=0.17-0.015, leading td=-0.09 andc=0.35.
©) In the case of small detunings, ;=€Ay), 6=€5Y, one
can easily show that Eq9) becomes, after rescaling, of the
form

Kl"'al _ K1
1+SA +a? 1+SAR

We then decomposa, ; into its real and imaginary parts 2 ) )

asag 1=Xg1+iyo 1. Equations(3) and (4) lead to the set of GA=A+dATA= (1 +iD)ATA- (1 +iC)|APA,  (10)

equations of the form gu=f(u,Ar,E) with U where the complex coefficient is a linear combination of

=(X0,X1,Y0,y1)", Where the superscrifit means transpose the detunings and the coefficierisand ¢ are modified with

vector andf=f,u+N(u,Ay). The linear partf, is composed respect to the expressions given above. The normal f@én

of two diagonal 2< 2 blocks, is an equation of the CSH type where the coefficient of the

o 0 0 Laplacian term is small. In order to clarify the roles of the

Y —2vA Laplacian and bi-Laplacian terms on the long-time dynamics

F(ag,ay) =

A, 4 0 0 of Eq. (9) we have compared the numerical solutions of Egs.
fu= 0 0 o | (6)  (9) and(10) and the CGL equation
-y -2
' GA=A+(L+ib)AA— (L1 +ic)|AlZA. (11)

0 o A 7 .
- _ To this end, we chose the parameters4 andc=-1, we
with £=2R3,/D?, v’ =-2(1+R/D), andD=1+SA,|%. use random initial conditions, and periodic boundaries in
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i L 4

Amplitude

FIG. 3. Steadily rotating spiral foR=4.5, S=0.1, andE=6.4
obtained after a long transiertx=0.78, and the grid is 128128
points.

shown to be stable with respect to long-wavelength pertur-
bations if

8 T T T T

1+bc>0, (12

which is identical to the Benjamin-Feir relation for the usual
CGL Eq.(11). As an example, the conditiaid2) is fulfilled

for the parameter set chosen in Fig.(d. the b,c values
given above for which a flat intensity profile, oscillating
homogeneously in time, is expected to be a solution of the
DOPOSA equations.

Amplitude

IIl. NUMERICAL RESULTS

We performed numerical simulations of the mean-field
model, Egs.(1) and (2), and we extend our study to the
propagation model that describes correctly the propagation
L J; s =|5 L '6 e of the fields through the two nonlinear medisee Eqs(1)—

(b) E (6) of [21]]. In this description, the fields are assumed to
have equal group velocity inside both media. Our humerical

FIG. 2. Amplitude diagram of the limit cycle. Comparison be- analysis allows us not only to check the above theoretical
tween the numerical models and the nonlinear analysis predictiopredictions but also to check the validity of the mean-field
(solid line). Parameters arB=4.5,S=0.1, andy=1 for (@) andR  approximation that is regularly used in nonlinear optics. Pre-
=2.3,S=0.4, andy=1 for (b). The diamonds correspond to the vious studies of localized pattern formation have revealed,
limit cycle amplitude for the mean-field model, the stars for the however, that the mean-field approximation is valid for small
propagation model. The dotted-dashed line in the middle draws thintensity patterns only{21,23. The mean-field model is
HSS amplitude. solved by using a code based on a finite-difference implicit

Crank-Nicholson scheme and the propagation model by us-
both transverse directions. Under these conditions, (Bg. ing a split and step spectral method. In both models we use
leads to a large stable spiral, while this case belongs to thmostly periodic boundary conditions in the two-dimensional
defect turbulent regime of the CGL, E@ll), where no transverse plane, and the number of grid points is from
stable spiral exists. In the case of Eq0), with a small 128x 128 up to 51X 512.
coefficient in front of the Laplacian operator, written ds In the parameter range investigated here, four different
=46(1+ib), the final state is also a spiral fétincreasing up to  solutions can be obtained for the same value of the pump
0.5. Therefore the Laplacian term in E4Q.0) plays a negli- amplitudeE> Ey, depending on the initial conditions. Two
gible role in the pattern selection mechanism, for small val-of them are time-independent solutions, the localized struc-
ues of the detunings, that justifies to focus on the case of zertnires and the periodic solutions. They result from a locking
detunings. between the two equivalent out-of-phase signal solutions

Since Eq.(9) has not yet been investigated to our knowl- [24] and are not considered here. The two other solutions,
edge, we derive in Appendix B the condition for stability of which interest us, oscillate in time with frequeney and are
plane-wave solutions of the forl=Fe(Q""*%) \where the formed around one of the HSS's, the signal amplitude being
amplitudeF and the frequencw depend on the wave num- positive (or negative on the whole transverse plane. One of
ber Q=|Q|<1, through the relation§?=1-Q* and w=c  these solutions has a homogeneous profile; the other presents
+(b—c)Q* The homogeneous oscillating stat®=0), is  defects. The homogeneous oscillating solution, which is ex-
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(b)

E
I

FIG. 4. Spiral break up re-
gime. Evolution during one pe-
riod. () t, (b) t+T/5, (c) t+2T/5,
(d) t+3T/5, and (e) t+4T/5.
(b)—(e) show one-fourth part of
the full pattern[upper part in the
middle of (a)]. Parameters are the
same as in Fig. 3, excef=7.1,
dx=0.5, and the grid is 208 200
points.

(e)

pected to be stable if the condition be> 0 is fulfilled (cf. S, the ratio of transmitivity for the two fieldg being fixed to
Sec. ), displays in-phase oscillating time traces in the wholey=1.
transverse plane. In the case of solutions with defects, local

time traces are phase shifted. We shall focus now on these A. Study of the homogeneous solution
two time-dependent solutions. _ _ _
In order to obtain a positive value for Rg) and avoid For small noisep, <A; and forE>Ey, numerical solu-

the formation of the solutions connecting the two Hsstions of the DOPOSA equations show the same behavior for
branches, we start from the initial conditioky(t=0,x,y)  theé values of parameters that we have chosen: long-
=Ag, Ay(t=0 X,y) =Ag+x(X,y), where the nois(x,y) is not wavelength modulations appear in the transient, whose am-

too large(its standard deviatiomwr, is always smaller than pIitude_ te_n d.s to zero asymp totically as time increa}ses. This
— X behavior is in agreement with our nonlinear analysis. Indeed

Ay). Below the Hopf thresholdz <E,, the initial noise de-  \hen using the values of coefficierisandc derived in Sec.
cays, and the final solution i€Ay,A;), indicating that the I B, we check that the relation Ie> 0 is fulfilled, indicat-
Hopf bifurcation occurs supercritically. Above the Hopf ing that our numerical investigation concerns the stable
threshold E> E, the final solution depends an,. Benjamin-Feir domain. The bifurcation diagrams given in
In the two next subsections, we describe the numericaFigs. 2a) and 2b), for two different cases, shows that the
solutions of the DOPOSA equatio[&gs.(1) and(2) and the  numerical amplitude of the limit cycle agrees with the pre-
propagation modgffor different values of parameteRand  diction of the nonlinear analysi$A(E)|=+(E-Ey)u,/cCs
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FIG. 5. Zigzag spirals. Evolu-
tion of the signal intensity along
one period.(a) t, (b) t+T/4 , (c)
t+2T/4 , and(d) t+3T/4. Param-
eters are the same as in Fig. 3, ex-
cept for E=8.8. Positive maxima
are on the spiral arms; few nega-
tive peaks are visible. The grid is
512X 512 anddx=0.234.

close toEy. The curves obtained with the DOPOSA modelsfor E<5.5 only. The prediction of the weakly nonlinear
depart from the theoretical predictions of the weakly nonlin-analysis presented in Sec. Il B. shows that the frequency of
ear analysis for larg&-E,. Moreover, in this regime, the the limit cycle, i.e., spatially homogeneous solutions oscillat-
mean-field model clearly fails to describe large-amplitudeing in time, depends on the control parameter values accord-
solutions because propagation effects become significant, &sg to w(E) =wy+ w;(E-Ey). Our numerical simulations are
expected from our previous studies of localized structuresn good agreement with this prediction. For example in the
[2]. For example, Fig. @) shows that the two models agree case Fig. Pa), the deviation between the numerics and the

FIG. 6. Chaos. Parameters &e 2.3, S=0.4, andE=5.5 (Ey
=3.74. The grid is 256< 256 with dx=0.50.

theory is about 10% &E=8.8, which is noticeably smaller
than the deviation of the amplitude.

B. Solutions with defects

For moderate noiser, <A, numerical simulations of the
DOPOSA equations show that spiral patterns are formed
close to the Hopf threshol(E= E,), as illustrated in Fig. 3,
for the parameter values of Fig(&, R=4.5 andS=0.1. Dur-
ing one period the spirals rotate with the frequensay
around their core. The spiral core amplitude is constant and
equal to the HSS value. We have checked that periodic snap-
shots correspond to the quasifrozen spiral solutions of Eq.
(9) for the corresponding and c values given in Sec. Il.
These spirals also occur in the numerical simulations of the
CGL, Eq.(11), for small values ob andc and were recently
identified as a liquid vortex staf@6]. For the values chosen
here forR and S the Hopf and Turing instabilities have
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threshold values€,,=6.385 andE;=7.1, respectively. In-
creasing the control paramet&; the time trace becomes
more and more chaotic and the quasifrozen spirals progres-
sively break into smaller ones. When approaching the Turing
threshold—i.e.,E<E;+—only wormlike and spiraling fila-
ments exist.This behavior is illustrated in Fig. 4. During one
period, the collision and separation processes of neighboring
filaments is represented in Fig. 4 at successive times
+nT/5,n=0, 1, 2, 3, 4. The far-field pattern displays mainly
components with wave numbers belonging to the whole
Hopf domain(left domain of the linear analysis curve in Fig.
1). This spiral breakup pattern looks like those obtained close
to the defect turbulent regime of CE¥] or in chemistry
[15,27]. Nevertheless, its slow dynamics differs from the
CGL turbulent pattern one. Our results are closer to those
previously reported in the physiological model describing the
cardiac tissu¢ 28], where the breakup of an isolated spiral
led to a quasifrozen state of small spirals. But in this model,
the breakup of the spiral was attributed to the large variations
of the rotation period which do not occur in the DOPOSA.
For larger input field amplitude—i.e., foE>E—the
arms become larger and get modulations. Eer8.5, each
arm splits into a central part and lateral damped wings. For
E~8.7, a new spiral pattern emerges with notched arms,
somehow remiscent of the “zigzag spirals” found in a gas
discharge devicg29]. Its behavior is illustrated in Fig. 5,
which clearly shows the behavior of the zigzag spirals during
one period, with collision and separation processes. These
high-intensity zigzag spirals coexist with few localized struc-
tures, which act as sources nucleating defects at time inter-
vals equal to one period. Note that in Fig. 5, the real part of (b)
the signal field is positive everywhere, except around the
extrema of the peaks where it is negative. The spatial Fourier FIG. 7. Spirals with circular input beam. Intensity of the signal
spectrum displays a central spot, with wave numbers smalldield, obtained with the propagation model. ParametersRar4.5,
than unity—i.e., belonging to the Hopf instability domain S=0.1, and y=1. (a) E=6.4, and grid is 256256 points, dx
(left curve in Fig. 3—and an outer ring which becomes =0.58.(b) E=8.7, and grid is 512512 points,dx=0.31.
more and more intense &sincreases. In the ring the wave
number values are comparable with those of the periodistricted our study to an isotropic system where the external
stationary pattern solutions such as rolls, hexagons, dield is a plane-wave beam. However, the inhomogeneities
squares. Therefore the zigzag spirals are an example @fduced by the pump profile and the finite geometry are both
mixed-mode solutions resulting from the interaction betweenmportant problems in optics. We show numerically that the
the Hopf and Turing instabilities. formation of spiral patterns reported can also be obtained
This result is confirmed by looking at the sequences obwith a Gaussian or hyper-Gaussian profile of the input field
tained for other parameter values. Let us consider the casemplitude. This numerical result is illustrated in Fig. 7. This
R=4.5 andS=0.05, where the Hopf and Turing thresholds problem has been discussed in the frame work of the CGL
are more separated than above. The spirals are not so beasgjuation[30].
tiful as in the case of Figs. 3-5, but the same sequence of
spirals, spiral portions, and zigzag spirals has been observed. IV CONCLUSION
Another caseR=2.3, S=0.4, corresponding to Fig.(d), is
especially interesting because there is no Turing instability We have investigated analytically and numerically the for-
(for E>E, the growth rate of the Turing modes decreasesnation of spiral pattern in the degenerate optical parametric
with E, differently from the cases described abpv@pirals  oscillator with a saturable absorber, which displays succes-
are observed close to the Hopf threshold, butEerE, no  sive homogeneous Hopdvith a zero wave numbgand Tur-
zigzag spirals appear, but chaotic structures with interlacethg instabilities, with well-separated thresholds. We have
filaments and craters, as shown in Fig. 6. performed a weakly nonlinear analysis in the vicinity of the
In the numerical simulations, we checked that the meanHopf bifurcation at the perfect resonance conditions—i.e.,
field model displays the same sequences as the propagatifor zero cavity detunings. This procedure allows us to derive
model. However, there are noticeable differences concerningn amplitude equation of the Ginzburg-Landau type but with
the amplitude of the pattern and the range of its existence, as bi-Laplacian rather than a simple Laplace operator. This
expected from our study in Fig. 2. Note that we have re-derivation has been extended to more general
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situations: namely, close to the resonant condition which is - Y(xY)?

obtained for small detuning parameters. Close to the Hopf YOy (D_ RE?)

threshold the predictions of the normal form equation for the 0 M1 X

amplitude of the limit cycle and its frequency are in good g@= }A(l) (1) ) (A2)
agreement with the numerical solutions of the DOPOSA 27T %o

equations. Our analysis reveals that the stability criterion for ADy(D)

the homogeneous oscillating solution is dee>0 |, like in T

the case of the CGL equation. where F?=tx(M?, t,=4A;38?/D3-3A;S/D?, and the trans-

Numerical simulations show various patterns with de-yerse Laplacian operator is such that <xy):8A(f)(xv)-
fects, in particular stationary spirals close to the Hopf thresh-E '

old E4, evolving into small spiral portions &s approaches quation(A2) gives

the Turing thresholdey, then into a zigzag spiral pattern - 'yp%
which is an example of a two-dimensional Hopf-Turing | popy= R
mixed-mode solutions. (@, — fuu® = A%?! ot L+1A7
The present study has emphasized the rich behavior of the 0
DOPOSA in the regime of strong interaction between the 0
Turing and the Hopf bifurcations. We have elucidated the ~ 29,2
formation of spirals close t&,, but many interesting ques- X YIP1
tions remain unsolved, such as properties of the disordered % PoPy+C . C. — Ripy|?
states and the transition leading to their formatia6,31. 0
0
ACKNOWLEDGMENTS 0
Lionel Gil is acknowledged for stimulating and enlighten- +ArAe! , | te-c (A3)
ing discussions. The IDRI$Institut de Développement et Po/
des Ressources en Informatiques du Centre National de la P1

Recherche Scientifigiieand the CRI(Centre de Ressources
en Informatiques de I'Université de Paris-$uadle acknowl-  _
edged for their services. This research was supported in part - ; -

by the Fonds National de la Recherche ScientifigBel- The inverse matrix is

The solvability condition is fulfilled since?tlu:&f/aE

gium) and by the Interuniversity Attraction Pole program of a(n) b(n) 0 0
the Belgian government. " B on al(n 0 0
=(n - = ,
n= (i =Ty 0 0 am bn
APPENDIX A: AMPLITUDE EQUATION CLOSE TO  Ey 0 0 c'(n) ai(n

(A4)

Close to the Hopf threshold, we use the expansions given } _ —
in Sec. 1l B just before Eq(8) and the HSS expansion where_ai(n)z(mwiy)/mib(n’)=—2A1_y/mn; c(n’)=A,1/mn,
(Ao, At 11) = (Ao, Ag L) +£2(A2 A2 119) with A2=15. my=(nio+y)(nio=y)+2¢,, a,(n)=(niwxy")/m, b'(n)=

The eigenvector of the adjoint problem, associated with the 2AY' Imy, - c'(M=A/m,, - and m=(niw+y)(niw-y")

submatrix Tevh _ ,
A particular solution of Eq(A3) is
, N X2:2) X2
M (2,20) (2,0
( _ ~ ) (A1) U@ = p2g2iat X1 +|AP X1
27A1H Y 0 0
0 0
with eigenvaluei wy, is (qo,_ql,O,O)"ei“’H‘. In the following 0
we choose po=(iwy=y)/Ap, Go=p;=1, and g;=(iwy onial O
+7)/ Ay, which givespgQo+p;G;=2i o/ Aqy. +A7Ad Y2 tc.c., (A5)
The second-order expansion of the stationary solution 2.0)
provides 1¥=D2/(D?-R9, A?=-Rsi?/D2, 1¥/D2, and ¢

A? =1 /2A,, where the inde =Dy (in the following, the ~ With

indexH is omitted when referring to the threshold value (2,20) = _ 2024 (D) 4 —Rtp2)b(2). x2:20)
At order &2 the mean-field model writegd, —f,)u® X YP1a(2) +(PoPr RUPDD(2), X

=g with = - ypic(2)+ (pops~ RpaL(2),

036224-8



SPIRAL PATTERNS, SPIRAL BREAKUP, AND ZIGZAG.

X9 = = 2y|p3la_(0) + (pop; + € . € . - Ri|pZ)b(0),

X(12,0) = -2y pﬂC(O) + (pop’; +c.c.- 2Rtf|p§|)a+(o),

PHYSICAL REVIEW E 71, 036224(2005

(2,0) —

1
yg)Z,w) - _poai(l) + plb,(l)u yl —pOC/(l) + pla-/l—(l) .

At order &* the mean-field model writegs; —f Ju®
=g® with

- 5’t2Xo - 29A XY - 29X - 2A1y P
o[ = A AP = RED — sy "
g (3) 1
gyO
3
g(yf

where  FI=t;2AV+ 2% ) +xP% with  t,
=8A; 282/D4 S/D?.
The solvability condition becomes

I A= uA =g APA - c AT, (A7)
with
p= ao(— 2YA?py) + a1 (AP py + Ao
Podo + plQl{ ' 1ALt A
- 2REAP Py},
Ca= ————1{- 29qo(xZ?’p; + xZ%py) + qyor
3 Dotlo + plql{ 0 ) * o},
a=— (2 X WV + a2, (A8)
Polo + P10 2
where
o= (2,20) p + X(z Op, + X(2 2¢u)p + X(12,0)p 2Rt( 2, 211))p

+ P2 X1 O)) 3Rt3p1p1]

In terms of the original variables, one obtains the amplltudé"”th b=

equation

AA= e2ul — Cg APA - ¢, A2A. (A9)

APPENDIX B: STABILITY OF WAVE SOLUTIONS
OF Eq. (9)

Equation(9) admits a family of plane-wave solutions, like

the CGL Eq.(11),
A=F¢Qrot+d) (B1)

where the amplitudé& and the frequency depend on the

wave numbeQ=|Q|<1,

FP=1-Q%

w=c+(b-c)Q* (B2)

The stability criterion of these solutions is derived from a
standard stability analysis involving the value of the under-
lying wave vectorQ and, of course, parametdyandc, as in
the case of the usual CGL equation. The perturbed solution

A=FdQr-0D) 1 55, dQH T+l y 55 dQ-KT+N =)t  |agds
to the eigenvalue problem
AN+a  FA1+ic)
2 . =0, (B3)
F5(1-ic) N+
with
a=F?+f,+i(cF?+bf,),
B=F2+f_—i(cF?+bf.), (B4)
andf,=k?+2Qk,k=|k|. The solution of Eq(B3). is
Ak)=-Db"+\b'2-g, (B5)

F2+k?+2ibQ-k,g=aB-F*1-c?). Expanding the
complex growth rate for smak gives

—iVgk=Dk? = iQgk®~ D4k* + O(K?),  (B6)
with

Vg = 4(b - C)Qszl
D, = 2(1 +bo)(Q? + 2Qf) + 8QEQ*(1 + /(1 - Q%,

2 2
Qg=4Qk{(b—C) Al )Q = 14cQQi/(1-QY)

-b(Q%+2Q)],
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Q4

2
D,=1+bc+ o Q4(1 +¢?) - 8Q%Q2 + b?(Q% + 2Q2)? D4, =1+bc+2(1 +c?)(9b? - 8) - 1441 +c?)
_ ibCQ“QZ(QZ + 2Q2) X L +32(1+ 602 + 5C4)Q—12 (B8)
(1-Q%? “ “ (1-Q%? (1-Q%*
32 ili illati
(1+6c2+ 504)Q8Q,‘(‘, (B7) The stability of the homogeneous oscillating st&@

=0) results from the fourth-order terihile it is given by
B ) D, in the case of the CGL equatipnvhich leads to the
where Q,=Q-k is the component o) parallel tok. The  congition 14c>0. At second order the range of stable
longitudinal perturbations witk//Q are the most dangerous \,4ve numbers obeys the relatigh< Qg with
ones. The solutionB1) are long-wave stable as long as the £
phase diffusion coefficient®,,,D,;, are positive. Equations
(B7) give 4 1+bc
2 4 2 4 QE:Z+b + 22 (B9)
Doy =2Q73(1 +bc) - 4Q%(1 +¢9/(1 -QY], ER
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